MEASUREMENT OF THE SPEED OF SOUND IN THE VAPOR OF FREON 113 AND DIETHYL ETHER

G. A. Mukhachev and O. F. Susekov

The speed of sound is a thermophysical characteristic widely used directly in calculations on thermodynamic processes. If the speed has been measured, one can deduce the specific heats at constant volume and pressure, etc. The speed can also be used to calculate or revise the individual constants in the equation of state.

Here we report measurements of the speed of sound as a function of temperature and pressure from normal conditions up to the critical points for freon 113 ($C_2Cl_3F_3$) and diethyl ether ($C_4H_{10}O$).

The measurements were made at 500 kHz with an acoustic interferometer modified from [1-3] to suit operation at boiling points exceeding room temperature. The vessel for preparing the vapor, the pressure gauge, and all the handling valves were mounted in a single unit.

The high sensitivity of the interferometer was retained throughout the temperature and pressure ranges by mounting the quartz plate in the neutral plane in a holder of chuck type.

The interferometer unit was placed in a TS-24 liquid thermostat controlled to $\pm 0.05^{\circ}$. The actual temperature fluctuations in the working medium were much less because a massive block was used. The temperature was monitored to $\pm 0.02^{\circ}$ C with a standard platinum thermometer (R₀ = 10 Ohm) and a R-307 potentiometer. A PM-60 piston gauge (grade 0.05) was used above 5 bar, while the range 2-5 bar was covered by a mercury U-tube. The bellows-type pressure transducer had a limit of detection of 1 mm Hg.

The calculated total error in the speed was 0.1% in the superheating region and 0.2% on the saturation line. The spread of the observed points fell within these limits.

The following substances were examined:

Freon 113

Boiling point 47.4°C at 760 mm Hg Final distillation temperature 48°C at 760 mm Hg Nonvolatile residue 0.003% No free chlorine No acids

Diethyl Ether

Boiling point 35° C at 760 mm Hg No acid, SO₂, H₂O₂, or aldehydes Nonvolatile residue 0.007%

The substances before use were additionally dried by passage through silica gel. The autoclave was evacuated to 10^{-3} mm Hg with a VN-1MG pump.

In measuring the speed of sound on the saturation line, we obtained incidentally values for p_s and t_s (saturation pressure and temperature) between 20 and 212°C. The results agreed well with those of [4], which provides an indirect confirmation of the accuracy and parity.

Kazan'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 163-167, January-February, 1971. Original article submitted December 22, 1969.

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

p, bar	c, m/sec	p, bar	c, m/sec	p, bar	c, m/sec	
$T = 320.56^{\circ}$ K		2.08 128.6		<i>T</i> = 422.96° К		
0.25	1 122.6	2.465	127.4	0 504	1 140 4	
0.312	122.2	2.905	126.23	1 1	438 7	
0.402	121 8	3.305	124.8	2 027	136.8	
0 453	124 64	3.745	123.34	3 107	130.0	
0 564	120 88	4.205	121.74	3.0	104.00	
0.001	120.00	4 565	400.00	J.J 1 07	104,0	
0.723	120.16	4.505	120.90	4.97	130.38	
0.807	119.77	5.0	119.5	0.007	127.77	
0.816	119.77	ə,545	110.03	7.027	125.35	
0.847	119.3	T = 40	3.56° K	8.01	122.58	
1.00	119.3		00 141-	8.99	119.9	
T - 3	49 56° W]]] = 0	UU MILLA	10.267	115.85	
1 0	10.00 K	0.237	137.4	11.067	113.05	
0.063	127.6	0 595	428 59	11.457	118.83	
0.095	127.5	0.020	426 44	44.00	(10.99	
0.163	126.93	4 455	100.11	11.90	110.22	
0.205	126.5	4 543	100.00	12.13	110.12	
0.208	126.87	4 036	134.50	12.207	109.81	
0.292	126.6	1.000	100,41	T = 44	3.26° K	
0.397	126.0	2.577	131.65	4 47	442 0	
0.385	126 1	3.08	130.45	1.1.	142.9	
0.518	125 89	3.54	129.23	2.16	140.7	
0.707	124 4	4.08	127.86	3.49	138.1	
	104.4	4.54	126.65	4,92	135.56	
1.14	123.4	5 25	124 5	6.57	132.2	
1.596	121.75	5.83	493.4	8.14	128.5	
1.841	121.5	6 216	422 34	8,42	125.6	
1.935	121.23	67	420 75	10.95	121.8	
T = 3	62.46° K	7.4	119.49	12.37	117.96	
0.004	1 100 0	7.436	118.4	13.93	113 4	
0.094	100.9	7.72	117.6	15 25	109 1	
0.105	130,30		0 100 11	16.13	105 7	
0.221	100.04	T = 40	3.56° K	16.67	103 8	
0.000	150.17	f = 9	00 kHz	17.13	102.9	
0.360	129.8	0.0425	142 07	777 4/	0 70977	
0.418	129.9	0.0455	140.57	1 == 40	53.10 K.	
0.584	129.3	0.059	140.00	1.075	146.99	
0.775	128,85	0.050	140.20	2.136	145.0	
1.054	127.9	0.003	130.55	3.536	142.8	
1.316	127.13	0.087	133.0	5.066	140.1	
1.343	126.83	0.001	100.4	7.046	136.1	
1.705	125.69	0.193	138.3	8.84	132.8	
1.966	124.9	0.215	137.9	44.93	408 25	
2.4	123 4	0.415	137.3	43 45	499.95	
2.74	122.2	1.046	135.75	45.97	140.00	
2.00	400.0	1.63	134.25	16 61	445.8	
3.00	120.8	2.31	132.56	19 23	408 97	
0.4	120.2	3.33	129.67	10.40	100.47	
$T = 382.16^{\circ}$ K.		4.51	126.8	20.77	103.1	
0.245	133.8	5.58	123.8	22.03	97.55	
0.513	133 0	6.55	120.7	40.07 92.75	94.1	
0 750	100.0	7 49	118 4	40.40 93.90	91.97	
0.750	132.35	1, 10	110.4	20,00	90.5	
1.140	101.4					
1.040	150.10		U			

TABLE 1. Speed of Sound as a Function of Pressure for Freon 113 $\,$

The apparatus was also first checked on nitrogen and helium, and checks during the measurements were made with argon.

Tables 1 and 2 give the results, which were recorded at 500 kHz.

A transmitter-receiver system was also used at 900 kHz with freon 113 at 130°C with pressure variation in order to establish the limits to the equilibrium thermodynamic speed of sound. The output signal from the receiving quartz crystal was recorded by an ÉPPV-60 potentiometer recorder.

The range in f/p was 1-85 MHz/bar.

Figure 1 shows the results. The solid line has been calculated from

$$\left(\frac{c}{c_0}\right)^2 = 1 + R \frac{C_{v_0} + (\omega\tau)^2 C_{v_0}}{C_{v_0}^2 + (\omega\tau)^2 C_{v_0}^2}$$
(1)

p, b a r	c, m/sec	p,b a r	c, m/sec	p,bar	c, m/sec
p, bar c, m/sec $T = 320.56^{\circ}$ K 0.25 196 0.4313 194.5 0.637 192.5 1.1015 190.1 1.462 188.2 1.71 187.2 $T = 342.78^{\circ}$ K 0.2091 0.2091 202.6 0.591 200.2		$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{array}{c} 3.43\\ 5.41\\ 5.9\\ 8.03\\ 9.9\\ 10.4\\ 11.9\\ 13.3\\ 14.9\\ 16.42\\ 17.48\\ 17.8\end{array}$	215.67 208.4 208.0 199.86 195.87 189.6 181.99 175.28 166.0 161.99 160.28
$\begin{array}{c} 1.055\\ 1.636\\ 2.225\\ 2.585\\ 2.985\\ T=3\\ 0.215\\ 0.6260\\ 1.22\\ 1.94\\ 2.48\\ 2.895\\ 3.5\\ 4.195\\ 4.605\\ 5.07\\ \end{array}$	197.9 194.8 190.5 189.0 187.6 62.5° K 208.3 206.1 203.5 200.1 197.6 196.0 193.17 189.7 187.7 186.2	T = 40 0.363 1.0821 1.967 3.48 5.017 6.06 7.05 7.76 8.57 9.55 10.15 10.65 11.9 12.01 $T = 44$ 0.385 1.43	1 11.0.0 33.96° K 218.4 216.73 213.62 209.1 203.1 200.5 196.0 192.66 190.4 185.3 184.0 181.8 173.9 172.26 23.56° K 223.47 220.24	$17.8 \\ 180.2 \\ T = 44 \\ 0.32 \\ 1.335 \\ 2.29 \\ 4.85 \\ 5.5 \\ 8.25 \\ 10.7 \\ 13.53 \\ 15.1 \\ 16.57 \\ 19.2 \\ 20.1 \\ 21.25 \\ 22.54 \\ 23.03 \\ 24.0 \\ 25.0 \\ 1000 \\ 25.0 \\ 1000 \\ 25.0 \\ 1000 \\$	160.28 156.9 44.36° K 229.8 227.46 225.3 220.1 215.3 210.59 202.32 193.67 189.63 184.8 174.0 171.5 165.19 157.1 153.9 145.4 136.0

TABLE 2. Speed of Sound in Diethyl Ether

Here c_0 is the speed of sound at zero frequency, ω is the working frequency, τ is relaxation time, C_{V0} is the specific heat at constant volume at low frequencies, $C_{V\infty}$ is the same at high frequencies, and R is the gas constant.

The result for the relaxation time for the vibrational degrees of freedom was

$$\tau^* = 3.10^{-8} \text{ sec}$$

Figure 1 shows that the dispersion in the speed lies within the limits of error of measurement even at p = 0.05 bar.

The relaxation time for diethyl ether is given [5] as

 $\tau^* = 6.6 \cdot 10^{-8}$ sec

which corresponds to the onset of appreciable dispersion for $p \leq 0.1 \mbox{ bar}$.

The following are results for k_0 (the adiabatic constant at low pressures) and k_{0p} (the value deduced from the C_p^0 from [4]):

$t^{\circ}C = 47$	69	89	109	130	150	170
$k_{0p} = 1.085$	1.072	1.068	1.065	1.061	1.058	1.054
$k_0 = 1.086$	1.073	1.068	1.067	1.061	1.058	1.055
$k_{0p} = 1.0715$	1.071	1.069				<u> </u>
$k_0 = 4.072$	1.069	1.067	1,063	1.061	1.059	1.057

The first two lines relate to $C_4H_{10}O$ and the second two to $C_2Cl_3F_3$. The discrepancies do not exceed 0.2%, which corresponds to 0.1% difference in the speed of sound. This all indicates that there is no dispersion for either substance for p > 0.1 bar and that the thermodynamic speed of sound applies.

The results were processed by computer to find the speed of sound as a function of the density and the virial coefficients in the equation of state:

$$\left(\frac{c}{c_0}\right)_T^2 = 1 + 2\rho \left[B + T\left(k_0 - 1\right)\frac{dB}{dT} + \frac{T^2\left(k_0 - 1\right)^2}{2k_0}\frac{d^2B}{dT^2}\right] + \rho^2 \left[\frac{(2k_0 + 1)}{k_0}C + \frac{T\left(k_0^2 - 1\right)}{k_0}\frac{dC}{dT} + \frac{T^2\left(k_0 - 1\right)^2}{2k_0}\frac{d^2C}{dT^2}\right]$$
(2)

Here c_{0T} is the speed of sound at constant temperature for zero pressure, c_T is the actual speed at constant temperature, ρ is density, k_0 is as above, B is the second virial coefficient, and C is the third one.

The virial coefficients were calculated from the Lennard-Jones potential [6], which was chosen on the basis that the molecules of $C_2Cl_3F_3$ and $C_4H_{10}O$ are nearly spherical. This assumption is reasonable because the calculated and observed speeds agree closely.

The coefficients in the polynomials

$$B = A_{11} + \frac{A_{21}}{T} + \frac{A_{31}}{T^2} \left(\frac{\mathrm{m}^3}{\mathrm{kg}}\right), \ C = A_{12} + \frac{A_{22}}{T} + \frac{A_{32}}{T^2} \left(\frac{\mathrm{m}^3}{\mathrm{kg}}\right)^2$$

were calculated as

$A_{11} \cdot 10^{6}$	$A_{21} \cdot 10^4$	A31 · 102	$A_{12} \cdot 10^8$	$A_{22} \cdot 10^{6}$	A32 · 104
-0.133868 3361.08	1,40925 	$-4.1762 \\ 10260.8$	-0.4454 -1702.68	$4.07464 \\ 22813.1$	-9.56721 -79773.3

The first line is for $C_4H_{10}O$ while the second is for $C_2Cl_3F_3$.

Figure 2a shows eight isotherms used in comparing the calculated and observed speeds as functions of p and T for freon 113, while Fig. 2b shows seven for diethyl ether. Each isotherm has 11 points.

The circles in Figs. 1 and 2 denote the observed values, while the solid lines are calculated values and the crosses are results from [3].

The discrepancies are largest near the saturation line and increase as the critical point is approached, but they do not exceed 0.9% in the region covered by the calculations.

The larger discrepancies near the saturation line may be ascribed to molecular association [7], which is not taken into account in the Lennard-Jones potential.

LITERATURE CITED

- 1. Yu. S. Trelin, "Speed of ultrasound in liquid and gaseous carbon dioxide," in: Use of Ultraacoustics in Materials Research [in Russian], Izd. Mosk. Obl. Ped. Inst., Moscow, No. 13 (1961).
- 2. I. S. Radovskii, "Measurement of the speed of sound in argon along the saturation line," Zh. Prikl. Mekhan. i Tekh. Fiz., No. 3 (1963).
- 3. E. P. Sheludyakov et al., Research on Thermophysical Properties [in Russian], Izd. Sib. Otdel, AN SSSR, Novosibirsk (1967).
- 4. N. B. Vargaftik, Handbook of the Thermophysical Properties of Gases and Liquids [in Russian], Fizmatgiz, Moscow (1963).
- 5. B. Ozdogan, "Natural vibrations of rectangular quartz plates and determination of the speed of sound in ethyl ether," J. Acoust. Soc. Am., 24, No. 5 (1952).
- 6. J. Hirschfelder et al., Molecular Theory of Gases and Liquids, Wiley (1964).
- 7. J. D. Lambert, G. A. H. Roberts, J. S. Rowlinson, and V. J. Wilkinson, "The second virial coefficients of organic vapors," Proc. Roy. Soc., A196, No. 1044, 113-125 (1949).